Climate impacts of the Atlantic Multidecadal Oscillation simulated in the CMIP5 models: A re-evaluation based on a revised index

نویسندگان

  • Kewei Lyu
  • Jin-Yi Yu
چکیده

The Atlantic Multidecadal Oscillation (AMO) has pronounced influences on weather and climate across the globe. This study provides a direct comparison of the observed AMO-related surface temperature and precipitation anomalies to those simulated in the Coupled Model Intercomparison Project Phase 5 (CMIP5) models. It is found that the model-simulated AMO-related features are obscured by the global signal in some key regions if the North Atlantic sea surface temperature (SST) itself is used to represent the AMO as in previous studies. After the global mean SST is removed from the North Atlantic SST, the CMIP5 models show substantially better agreement with the observations in terms of the AMO-related worldwide impacts, such as the Pacific SST and the rainfall over the United States and India. These results suggest the removal of the global signal or signals originating in other ocean basins is a necessary procedure to uncover the AMO features in climate model simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts

[1] This study assesses the CMIP5 decadal hindcast/ forecast simulations of seven state-of-the-art oceanatmosphere coupled models. Each decadal prediction consists of simulations over a 10 year period each of which are initialized every five years from climate states of 1960/1961 to 2005/2006. Most of the models overestimate trends, whereby the models predict less warming or even cooling in the...

متن کامل

Natural and Forced North Atlantic Hurricane Potential Intensity Change in CMIP5 Models*

Possible future changes of North Atlantic hurricane intensity and the attribution of past hurricane intensity changes in the historical period are investigated using phase 5 of the Climate Model Intercomparison Project (CMIP5), multimodel, multiensemble simulations. For this purpose, the potential intensity (PI), the theoretical upper limit of the tropical cyclone intensity given the large-scal...

متن کامل

The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran

The main objective of this study was to reveal the impact of nine climate indices on temperature changes and climate oscillations in Golestan Province along the southern coast of the Caspian Sea. Climate indices data from across the Atlantic-Eurasian sector were collected from the NCEP/NCAR, the Climate Prediction Centre (CPC) and the Climatic Research Unit (CRU) over a period of 40 years (1971...

متن کامل

The influence of Atlantic-Eurasian teleconnection patterns on temperature regimes in South Caspian Sea coastal areas: a study of Golestan Province, North Iran

The main objective of this study was to reveal the impact of nine climate indices on temperature changes and climate oscillations in Golestan Province along the southern coast of the Caspian Sea. Climate indices data from across the Atlantic-Eurasian sector were collected from the NCEP/NCAR, the Climate Prediction Centre (CPC) and the Climatic Research Unit (CRU) over a period of 40 years (1971...

متن کامل

Climate impacts of recent multidecadal changes in Atlantic Ocean Sea Surface Temperature: a multimodel comparison

During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017